APPLICATIONS OF DECISION AUGMENTATION THEORY

BY EDWIN C. MAY, S. JAMES P. SPOTTISWOODE, JESSICA M. UTTS, AND CHRISTINE L. JAMES

ABSTRACT: Decision augmentation theory (DAT) provides an informational mechanism for a class of anomalous mental phenomena that have hitherto been viewed as being caused by a force-like mechanism. Under specifiable conditions, DAT’s predictions for statistical anomalous perturbation databases are different from those of all force-like mechanisms. For large random number generator databases, DAT predicts a zero slope for a least squares fit to the \((x^2, n) \) scatter diagram, where \(n \) is the number of bits resulting from a single run and \(x \) is the resulting \(z \) score. We find a slope of \((1.73 \pm 3.19) \times 10^{-6} \) \((t = 0.543, df = 126, p = .295) \) for the historical binary RNG database, which strongly suggests that some informational mechanism is responsible for the anomaly. In a two sequence length analysis of a limited set of RNG data from the Princeton Engineering Anomalies Research laboratory, we find that a force-like explanation misses the observed data by 8.6\(\sigma \); however, the observed data are within 1.1\(\sigma \) of the DAT prediction. We also apply DAT to one pseudo-RNG study and find that its predicted slope is not significantly different from the expected value for an informational mechanism. We review and comment on six published articles that discussed DAT’s earlier formalism (i.e., intuitive data sorting). We found two studies that support a force-like mechanism. Our analysis of Braud’s 1990 hemolysis study confirms his finding in favor of an influence model over a selection one \((p = .023) \), and Braud and Schlitz (1989) demonstrated a force-like interaction in their remote staring experiment \((p = .020) \). We provide six circumstantial arguments against an influence hypothesis. Our anomalous cognition research suggests that the quality of the data is proportional to the total change of Shannon entropy. We demonstrate that the change of Shannon entropy of a binary sequence from chance is independent of sequence length; thus, we suggest that a fundamental argument supports DAT over influence models. In our conclusion, we suggest that, except for one special case, the physical RNG database cannot be explained by any influence model, and that contradicting evidence from two experiments on biological systems should inspire more investigations in a way that would allow valid DAT analyses.

INTRODUCTION

May, Utts, and Spottiswoode (1995) proposed decision augmentation theory (DAT) as a general model of anomalous mental

Requests for reprints should be sent to Edwin C. May, Ph.D., Cognitive Sciences Laboratory, 330 Cowper Street, Suite 200, Palo Alto, CA 94301.
phenomena.1 DAT holds that anomalous cognition information is included along with the usual inputs that result in a final human decision that favors a "desired" outcome. In statistical parlance, DAT says that a slight, systematic bias is introduced into the decision process by anomalous cognition.

This concept has the advantage of being quite general. We know of no experiment that is devoid of at least one human decision; thus, DAT might be the underlying basis for anomalous mental phenomena. May et al. (1995) mathematically developed this concept and constructed a retrospective test algorithm that can be applied to existing databases. In this paper, we summarize the theoretical predictions of DAT, review the criteria for valid retrospective tests, and analyze the historical random number generator (RNG) database. In addition, we summarize the findings from one prospective test of DAT and comment on the published criticisms of an earlier formulation, which was then called intuitive data sorting (IDS). We conclude with a discussion of the RNG results that provide a strong circumstantial argument against a force-like explanation. As part of this review, we show that one biological-AP experiment is better described by an influence model.

\textbf{Review of Decision Augmentation Theory}

Since the formal discussion of DAT is statistical, we will describe the overall context for the development of the model from that perspective. Consider a random variable, X, that can take on continuous values (e.g., the normal distribution) or discrete values (e.g., the binomial distribution). Examples of X might be the hit rate in an RNG experiment, the swimming velocity of single cells, or the mutation rate of bacteria. Let Y be the average of X computed over n values, where n is the number of items that are collected as the result of a single decision—one trial. Often this may be equivalent to a single effort period, but it also may include repeated efforts. The key point is that, regardless of the effort style, the average value of the dependent variable is computed over the n values resulting from one decision point. In the examples above, n is the sequence length of a single run in an RNG experiment, the number of swimming cells measured during the trial, or the number of

1The Cognitive Sciences Laboratory has adopted the term \textit{anomalous mental phenomena} instead of the more widely known psi. Likewise, we use the terms \textit{anomalous cognition (AC)} and \textit{anomalous perturbation (AP)} for ESP and PK, respectively. We have done so because we believe that these terms are more naturally descriptive of their observables and are neutral in that they do not imply mechanisms. These new terms will be used throughout this paper.
bacteria-containing test tubes present during the trial. As we will show, force-like effects require that the z score, which is computed from the Ys, increase as the square root of n. In contrast, informational effects will be shown to be independent of n.

Under DAT, we assume that the underlying parent distribution of a physical system remains unperturbed; however, the measurements of the physical system are systematically biased by an AC-mediated informational process. Since the deviations seen in actual experiments tend to be small in magnitude, it is safe to assume that the measurement biases are small and that the sampling distribution will remain normal. Therefore, we assume the bias appears as small shifts of the mean and variance of the sampling distribution as:

\[z \sim N(\mu_z, \sigma_z^2), \]

where \(\mu_z \) and \(\sigma_z \) are the mean and standard deviation of the sampling distribution. Under the null hypothesis, \(\mu_z = 0.0 \) and \(\sigma_z = 1.0 \).

Review of an Influence Model

For comparison's sake, we summarize a class of influence models. We begin with the assumption that a putative anomalous force would give rise to a perturbational interaction, by which we mean that given an ensemble of entities (e.g., random binary bits), an anomalous force would act equally on each member of the ensemble, on the average. We call this type of interaction micro-AP.

In the simplest micro-AP model, the perturbation induces a change in the mean of the parent distribution but does not affect its variance. We parameterize the mean shift in terms of a multiplier of the initial standard deviation. Thus:

\[\mu_1 = \mu_0 + \varepsilon_{\text{AP}} \sigma_0, \]

where \(\mu_1 \) and \(\mu_0 \) are the means of the perturbed and unperturbed distributions, respectively, and where \(\sigma_0 \) is the standard deviation of the unperturbed distribution. \(\varepsilon_{\text{AP}} \) can be considered the AP effect size. Under the null hypothesis for binary RNG experiments, \(\mu_1 = \mu_0 = 0.5, \sigma_0 = 0.5 \), and \(\varepsilon_{\text{AP}} = 0 \).

The expected value \(\mathbb{E} \) and the variance \(\text{Var} \) of \(z^2 \) for mean chance expectation and under the force-like and information assumptions for
the normal distribution are shown in Table 1. The details of the calculations can be found in May et al. (1995).

Table 1

Normal Parent Distribution

<table>
<thead>
<tr>
<th>Quantity</th>
<th>MCE</th>
<th>Micro-AP</th>
<th>DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(x^2)$</td>
<td>1</td>
<td>$1 + e_{AP} n$</td>
<td>$\mu^2 + \sigma^2$</td>
</tr>
<tr>
<td>$\text{Var}(x^2)$</td>
<td>2</td>
<td>$2(1 + 2e_{AP} n)$</td>
<td>$2(\sigma^2 + 2\mu^2\sigma^2)$</td>
</tr>
</tbody>
</table>

Figure 1 graphically displays these theoretical calculations for the three mechanisms.

This formulation predicts grossly different outcomes for these models and therefore is ultimately capable of separating them, even for very small effects. The important differences are in the slope and intercept values. MCE gives a slope of 0 and an intercept of 1. DAT predicts a slope of 0, but an intercept greater than 1, and micro-AP predicts an intercept of 1, but a slope greater than 0.

![Graph showing predictions of MCE, micro-AP, and DAT](image)

Figure 1. Predictions of MCE, micro-AP, and DAT.

Monte Carlo Verification

The expressions shown in Table 1 are representations that arise from simple algebraic manipulations of the basic mathematical assumptions of the models. To verify that these expressions give the expected results, we used a published pseudo-RNG (Lewis, 1975) with well-understood properties to produce data that mimicked the results under three models (i.e., MCE, micro-AP, and DAT). Our standard implementation of the pseudo-RNG allows the integers in the range $(0, 2^{15}−1)$ as potential seeds. For the sequence lengths 100, 500, 1000, and 5000, we computed
z scores for all possible seeds with an effect size of 0.0 to simulate MCE and an effect size of 0.03 to simulate micro-AP. To simulate DAT, we used the fact that in the special case where the effect size varies as 1/\sqrt{n}$, micro-AP and DAT are equivalent. For this case we used effect sizes of 0.030, 0.0134, 0.0095, and 0.0042 for the above sequence lengths, respectively. Figures 2a–c show the results of 100 trials, which were chosen randomly from the appropriate z score data sets, at each of the sequence lengths for each of the models. In each figure, MCE is indicated by a horizontal solid line at $z^2 = 1$.

![Graphs](image-url)

Figure 2. z^2 versus n for Monte Carlo simulations of MCE, micro-AP, and DAT.

The slope of a least squares fit computed under the MCE simulation was $-(2.81 \pm 2.49) \times 10^{-6}$, which corresponds to a p value of .812 when tested against 0, and the intercept was 1.007 ± 0.005, which corresponds to a p value of .131 when tested against 1. Under the
micro-AP model, an estimate of the effect size using the expression in Table 1 was $\varepsilon_{\text{AP}} = 0.0288 \pm 0.002$, which is in good agreement with 0.03, the value that was used to create the data. Similarly, under DAT the slope was $-(2.44 \pm 57.10) \times 10^{-8}$, which corresponds to a p value of 0.515 when tested against 0, and the intercept was 1.050 ± 0.001, which corresponds to a p value of 2.4×10^{-4} when tested against 1.

Thus, we are able to say that the Monte Carlo simulations confirm the simple formulation shown in Table 1.

Retrospective Tests

It is possible to apply DAT retrospectively to any body of data that meet certain constraints. It is critical to keep in mind the meaning of n—the number of measures of the dependent variable over which to compute an average during a single trial following a single decision. In terms of their predictions for experimental results, the crucial distinction between DAT and the micro-AP model is the dependence of the results upon n; therefore, experiments that are used to test these theories ideally should be those in which experiment participants are blind to n, and where the distribution of n does not contain extreme outliers.

Aside from these considerations, the application of DAT is straightforward. Having identified the unit of analysis and n, simply create a scatter diagram of points (x^2, n) and compute a weighted least square fit to a straight line. Table 1 shows that for the micro-AP model, the slope of the resulting fit is the square of the AP effect size. A Student's t test may be used to test the hypothesis that the AP effect size is 0, and thus test for the validity of the micro-AP model. If the slope is 0, these same tables show that the intercept may be interpreted as a strength parameter for DAT. In other words, an intercept larger than 1 would support the DAT model, whereas a slope greater than 0 would support the micro-AP model.

If the DAT strength is presumed to be constant (i.e., μ_x and σ_x are constant), then an additional test is possible. That is, in two experiments involving N at n_1 and M at n_2 decisions, respectively, DAT predicts that Stouffer's z of these experiments should be in the ratio of $\sqrt{N/M}$ and $\sqrt{N/M} \times \sqrt{n_2/n_1}$ for AP.

Historical Binary RNG Database

Radin and Nelson (1989) analyzed the complete literature (i.e., over 800 individual studies) of consciousness-related anomalies in random physical systems. They demonstrated that a robust statistical anomaly exists in that database. Although they analyzed these data from a
number of perspectives, they report an average \(z / \sqrt{n} \) effect size of approximately \(3 \times 10^{-4} \), regardless of the analysis type. Radin and Nelson did not report \(p \) values, but they quote a mean \(z \) of 0.645 and a standard deviation of 1.601 for 597 studies. We compute a single-mean \(t \) score of 9.844, \(df = 596 \), \(p = 3.7 \times 10^{-23} \).

We returned to the original publications of all the binary RNG studies from those listed by Radin and Nelson and identified 128 studies in which we could compute, or were given, the average \(z \) score, the number of runs, \(N \), and the sequence length, \(n \), which ranged from 16 to 10,000. For each of these studies we computed:

\[
\bar{z}^2 = \mu^2_z + \left(\frac{N-1}{N} \right) s^2_z .
\]

Since we were unable to determine the standard deviations of the \(z \) scores from the literature, we assumed that \(s_z = 1.0 \) for each study. We see from Table 1 that under mean chance expectation the expected variance of each \(z^2 \) is 2.0, so that the estimated standard deviations for the \(z^2 \) for a given study is \(\sqrt{2.0/N} \).

Figure 3 shows a portion of the 128 data points (\(z^2 \), \(n \)). MCE is shown as a solid line (i.e., \(z^2 = 1 \)), and the expected best-fit lines for two assumed AP effect sizes of 0.01 and 0.003, respectively, are shown as short dashed lines. We calculated a weighted (i.e., using \(N/2.0 \) as the weights) least
squares fit to an $a + b^n$ straight line for the 128 data points and display it as a long-dashed line. For clarity, we have offset and limited the z^2 axis and have not shown the error bars for the individual points, but the weights and all the data were used in the least squares fit. We found an intercept of $a = 1.036 \pm 0.004$. The 1 standard error for the intercept is small and is shown in Figure 3 in the center of the sequence range. The t score for the intercept being different from 1.0 (i.e., $t = 9.1$, $df = 126$, $p = 4.8 \times 10^{-20}$) is in good agreement with that derived from Radin and Nelson's analysis. Since we set standard deviations for all the zs equal to 1, and since Radin and Nelson showed that the overall standard deviation was 1.6, we would expect that our analysis would be more conservative than theirs because a larger standard deviation would increase our computed value for the intercept.

The important result, however, was that the slope of the best-fit line was $b = (1.73 \pm 3.19) \times 10^{-6}$ ($t = 0.543$, $df = 126$, $p = .295$), which is not significantly different from 0. Adding and subtracting one standard error to the slope estimate produces an interval that encompasses 0. Even though a very small AP effect size might fit the data at large sequence lengths, it is clear in Figure 3 what happens at small sequence lengths; an $e_{AP} = 0.003$ suggests a linear fit that is significantly below the actual fit.

The sequence lengths from this database are not symmetric, nor are they uniformly distributed; they contain outliers (i.e., median = 64, average = 566). Figure 4 shows that the lower half of the data, however, is symmetric and nearly uniformly distributed (i.e., median = 35, average = 34). Since the criterion for a valid retrospective test is that n should be uniform, or at least not contain outliers, we analyzed the two median halves independently. The intercept for the weighted best-fit line for the uniform lower half is $a = 1.022 \pm 0.006$ ($t = 3.63$, $df = 62$, $p = 2.9 \times 10^{-4}$), and the slope is $b = (-0.034 \pm 3.70) \times 10^{-4}$ ($t = -0.010$, $df = 62$, $p = 0.504$). The fits for the upper half yield $a = 1.064 \pm 0.005$ ($t = 13.47$, $df = 62$, $p = 1.2 \times 10^{-41}$) and $b = (-4.52 \pm 2.38) \times 10^{-6}$ ($t = -1.903$, $df = 62$, $p = 0.969$), for the intercept and slope, respectively.

Since the best retrospective test for DAT is one in which the distribution of n contains no outliers, the statistically 0 slope for the fit to the lower half of the data is inconsistent with a simple AP model. Although the same conclusion could be reached from the fits to the database in its entirety (i.e., Figure 3), we suggest caution in that this fit could possibly be distorted by the distribution of the sequence lengths. That is, a few points at large sequence lengths can easily influence the slope. Since the slope for the upper half of the data is statistically slightly negative, it is problematical to assign an imaginary AP effect size to these data. More likely, the results are distorted by a few outliers in the upper half of the data.
From these analyses, it appears that z^2 does not linearly depend upon the sequence length; however, since the scatter is so large, even a linear model is not a good fit (i.e., $\chi^2 = 171.2$, $df = 125$, $p = 0.0038$), where χ^2 is a goodness-of-fit measure in general given by:

$$\chi^2 = \sum_{j=1}^{v} \frac{1}{\sigma_j^2} (y_j - f_j)^2,$$

where the σ_j are the errors associated with data point y_j, f_j is the value of the fitted function at point j, and v is the number of data points.

A "good" fit to a set of data should lead to a nonsignificant χ^2. The fit is not improved by using higher order polynomials (i.e., $\chi^2 = 170.8$, $df = 124$; $\chi^2 = 174.1$, $df = 123$; for quadratics and cubics, respectively). If, however, the AP effect size was any monotonic function of n other than the degenerate case where the AP effect size is exactly proportional to $1 / \sqrt{n}$, it would manifest as a non-0 slope in the regression analysis.
Within the limits of this retrospective analysis, we conclude for RNG experiments that we must reject all influence models which propose a shift of the mean of the parent distribution.

Princeton Engineering Anomalies Research Laboratory RNG Data

The historical database that we analyzed does not include the extensive RNG data from the Princeton Engineering Anomalies Research (PEAR) laboratory because the total number of bits in their experiments exceeds the total amount in the entire historical database. For example, in a recent report Nelson, Dobyns, Dunne, and Jahn (1991) analyze 5.6×10^6 trials all at $n = 200$ bits. In this section, we apply DAT retrospectively to their published work where they have examined other sequence lengths; however, even in these cases, they report over five times as much data as in the historical database.

Jahn (1982) reported an initial RNG data set with a single operator at $n = 200$ and 2,000. Data were collected both in the automatic mode (i.e., a single button press produced 50 trials at n) and the manual mode (i.e., a single button press produced 1 trial at n). From a DAT perspective, data were actually collected at four values of n (i.e., 200, 2000, $200 \times 50 = 10,000$, and $2,000 \times 50 = 100,000$). Unfortunately, data from these two modes were grouped together and reported only at 200 and 2,000 bit/trial. It would seem, therefore, that we would be unable to apply DAT to these data. Jahn, however, reports that the different modes "give little indication of importance of such factors in the overall performance" (p. 149). This qualitative statement suggests that the micro-AP model is indeed not a good description for these data, because under micro-AP we would expect stronger effects (i.e., higher z scores) at the longer sequence lengths.

Nelson, Jahn, and Dunne (1986) describe an extensive RNG and pseudo-RNG database in the manual mode only (i.e., over 7×10^6 trials); however, whereas Jahn provides the mean and standard deviations for the hits, Nelson et al. report only the means. We are unable to apply DAT to these data because any assumption about the standard deviations would be highly amplified by the massive data set.

As part of a cooperative agreement in 1987 between PEAR and the Cognitive Sciences Program at SRI International, we analyzed a set of RNG data from a single operator. Since they supplied the raw data for each button press, we were able to analyze these data at two extreme values of n. We combined the individual trial z scores for the

We thank R. Jahn, B. Dunne, and R. Nelson for providing these raw data for our analysis in 1987.
high and low aims, because our analysis is two-tailed in that we examine z^2.

Given that the data sets at $n = 200$ and 100,000 were independently significant (Stouffer’s z of 3.37 and 2.45, respectively), and given the wide separation between the sequence lengths, we used DAT as a retrospective test on these two data points.

Because we are examining only two values of n, we do not compute a best-fit slope. Instead, as outlined in May et al. (1995), we compare the micro-AP prediction to the actual data at a single value of n.

At $n = 200$, 5918 trials yielded $z = 0.044 \pm 1.030$ and $z^2 = 1.063 \pm 0.019$. We compute a proposed AP effect size $\bar{z}/\sqrt{200} = 3.10 \times 10^{-3}$.

With this effect size, we computed what would be expected under the micro-AP model at $n = 100,000$. Using the theoretical expressions in Table 1, we computed $\bar{z}^2 = 1.961 \pm 0.099$. The 1-sigma error is derived from the theoretical variance divided by the actual number of trials (597) at $n = 100,000$. The observed values were $\bar{z} = 0.100 \pm 0.997$ and $\bar{z}^2 = 1.002 \pm 0.050$. A t test between the observed and expected values of \bar{z}^2 gives $t=8.643$, $df=1192$. Considering this t as equivalent to a z, the data at $n = 100,000$ fail to meet what would be expected under the influence model by 8.66. Suppose, however, that the effect size observed at $n = 100,000$ (3.18×10^{-4}) better represents the AP effect size. We computed the predicted value of $\bar{z}^2 = 1.00002 \pm 0.018$ for $n = 200$. Using a t test for the difference between the observed value and this predicted one gives $t=2.398$, $df=11,834$. The micro-AP model fails in this direction by more than 2.3σ. DAT predicts that \bar{z}^2 would be statistically equivalent at the two sequence lengths, and we find that to be the case ($t=1.14$, $df=6513$, $p = .127$).

Jahn (1982, p. 149) indicates that in PEAR’s RNG data “traced back to the elemental binary samples, these values imply directed inversion from chance behavior of about one or one and a half bits in every one thousand.” Assuming 1.5 excess bits/1000, we calculate an AP effect size of 0.003, which is consistent with the observed value in PEAR’s $n = 200$ data set. Since this was the value we used in our DAT analysis, we are forced to conclude that this data set from PEAR is inconsistent with the simple micro-AP model and that Jahn’s statement is not a good description of the anomaly.

We urge caution in interpreting these calculations. As is often the case in a retrospective analysis, some of the required criteria for a meaningful test are violated. These data were not collected when the operators were blind to the sequence length. Second, these data represent only a fraction of PEAR’s database.
In developing a methodology for future tests, Radin and May (1986) worked with two operators who had previously demonstrated strong ability in RNG studies. To create the binary sequences, they used a pseudo-RNG which was based on a shift-register algorithm by Kendell and has been shown to meet the general criteria for "randomness" (Lewis, 1975).

The operators were blind to which of nine different sequences (i.e., \(n = 101, 201, 401, 701, 1001, 2001, 4001, 7001, 10001 \) bits)\(^3\) were used in any given trial, and the program was such that the trials lasted for a fixed time period and feedback was presented only after the trial was complete. Thus, the criteria for a valid test of DAT had been met, except that the source of the binary bits was a pseudo-RNG.

We reanalyzed the combined data from this experiment with the current z score formalism of DAT. For the 200 individual runs (i.e., 10 at each of the sequence lengths for each of the two participants) we found the best fit line to yield a slope \(= 4.3 \times 10^{-8} \pm 1.6 \times 10^{-6} \) (\(t = 0.028, df = 8, p = .489 \)) and an intercept \(= 1.16 \pm 0.06 \) (\(t = 2.89, df = 8, p = .01 \)). The slope interval easily encompasses 0 and is not significantly different from 0, and the intercept significance level (\(p = .01 \)) is consistent with what Radin and May reported earlier.

Since the pseudo-RNG seeds and bit streams were saved for each trial, it was possible to determine whether the experiment sequences exactly matched the ones produced by the shift register algorithm; they did. Since their UNIX-based Sun Microsystems workstations were synchronized to the system clock, any momentary interruption of the clock would "crash" the machine, but no such crashes occurred. Therefore, we believe no force-like interaction occurred.

To explore the timing aspects of the experiment, Radin and May reran each run with pseudo-RNG seeds ranging from \(-5\) to \(+5\) clock ticks (i.e., 20 ms/tick) from the actual seed used in the run. We plot the resulting run effect sizes, which we computed from the experimental \(F \) ratios (Rosenthal, 1991), for Operator 531 in Figure 5. The estimated standard errors are the same for each seed shift and equal 0.057.

Radin and May erroneously concluded that the significant differences between 0 and adjacent seed positions were meaningful and that the DAT ability was effective within 20 ms. In fact, the situation shown in Figure 5 is expected. Differing from true RNGs in which slight changes in timing produce essentially the same sequence, pseudo-RNGs produced

\(^3\)The original IDS analysis required the sequence lengths to be odd because of the logarithmic formalism.
totally different sequences as a function of single-digit seed changes. Thus, it would be surprising if the seed-shift display produced anything but a spike at seed shift zero. We will return to this point in our analysis of some of the published remarks on our theory.

![Graph showing Seed Effect Size vs. Relative Seed Position](image)

Figure 5. Seed timing for Operator 531 (298 runs).

From this prospective test of DAT, we conclude that for pseudo-RNGs it is possible to select a proper entry point into a bit stream to produce significant deviations from mean chance expectation that are independent of sequence length.

The Literature: Review and Comment

We have identified six published articles that have commented upon the intuitive data sorting (IDS) theory, the earlier name for DAT. In this section, we chronologically summarize and comment on each report.

Walker—September 1987

In his first of two criticisms of IDS, Walker (1987) suggested that his Monte Carlo simulations did not fit the predictions of the model. He generated a single deviant set of 100 bits (i.e., $z = 2.33, p = .01$), and he inserted this same sequence as the first 100 bits of 400 otherwise randomly generated sequences ranging from 100 to 10^6 bits in length.
Walker’s analysis of these sequences did not yield a least square’s slope of \(-0.5\) as predicted under the IDS formalism. Walker concluded that the model was incorrect. Walker’s sequences, however, are not the type that are generated in AP experiments or the type for which the IDS model is valid.

May, Radin, Hubbard, Humphrey, and Utts (1985) were explicit about the character of the sequences that fit the IDS model. Specifically, Walker (1987, p. 217) quotes May et al. (1985, p. 249): “Using psi-acquired information, individuals are able to select locally deviant subsequences from a longer random sequence.” (Italics are used in the original May et al. paper.) In the very next sentence, May et al. (1985, p. 249) say: “Such an ability, if mediated by precognition, would allow individuals (subjects or experimenters) to initiate a collection unit of continuous samples (this has been reported as a trial, a block, a run, etc.) in such a way as to optimize the final result.” (Italics added here for emphasis.) Walker (1987, p. 218) continued: “Indeed, the only way the subject can produce results that agree with the data is to wait for an extrachance run that matches the experimental run length.” In the final analysis, Walker actually supported our contention that individuals select deviant sub-sequences. Both from our text and the formalism in our 1985 paper, it is clear that what we meant by a “large random sequence” was large compared to the trial length, \(n\).

In his second criticism of IDS in the same paper, Walker proposed that individuals would have to exhibit a physiologically impossible control over timing (e.g., when to press a button). As evidence apparently in favor of such an exquisite timing ability, he referred to the data presented by Radin and May (1986) that we have previously discussed (see Figure 5). Walker suggested that Radin and May’s result, therefore, supported his quantum mechanical observer theory. It is beyond the scope of this paper to critique Walker’s quantum mechanical models, but we would hope they do not depend upon his analysis of Radin and May’s results. The enhanced hitting at zero seed and the suppressed values \(\pm\) one 20-ms clock tick that we show in Figure 5 is the expected result based upon the well-understood properties of pseudo-RNGs and does not represent the precision of the operator’s reaction time.

We must consider how it is possible with normal human reactions to obtain significant scores, which can only happen in 20-ms windows. In typical visual reaction time measurements, Woodworth and Schlosberg (1960) found a standard deviation of 30 ms. If we assume these human reactions are typical of those for AC performance and are normally distributed, we compute the maximum probability of being within a 20-ms window (i.e., centered about the mean) of 23.5\%. For the worst case, the operators must “hit” significant seeds less often than 23.5\% of
the time. Radin and May (1986) do not report the number of significant runs, so we provide a worst-case estimate. Given that they quote a p value of .005 for 500 trials, we find that 39 trials must be independently significant. That is, the accumulated binomial probability is .005 for 39 hits in 500 trials with an event probability of .05. This corresponds to a hitting rate (i.e., 39/500) of only 7.8%, a value well within the capability of human reaction times. We recognize that it is not a requirement to hit only on significant seeds; however, all other seeds leading to positive z scores are less restrictive than the case we have presented.

The zero-center “spike” in Figure 5 misled Walker and others into thinking that exceptional timing was required to produce the observed deviations. As we have shown, this is not the case, and therefore Walker’s second criticism of the IDS theory is not valid.

Bierman—1988

Bierman (1988) attempted to test the IDS model with a gifted subject. His experimental design appeared to meet most of the criteria for a valid test of the model; however, Bierman found no evidence of an anomaly and stated that no conclusions could be drawn from his work. We encourage Bierman to continue with this design and to be specific with what he would expect to see if DAT were the correct mechanism compared to if it were not.

Braud and Schlitz—1989

Braud and Schlitz (1989) conducted an electrodermal PK experiment specifically to test the IDS model. They argued that if the mechanism of the effect were informational, then allowing participants more opportunities to select locally deviant values of the dependent variable should yield stronger effects. In their experiment, either 12 electrodermal sampling epochs were initiated individually by a press of a button, or all 12 were determined as a result of the first button press. Braud and Schlitz hypothesized that under IDS they would expect to see a larger overall effect in the former condition. They found that the single button press data yielded a significant result, whereas the multiple press data scored at chance ($t_{\text{single}}[31] = 2.14, p = .02, t_{\text{multi}}[31] = -0.53$). They correctly concluded, therefore, that their data were more consistent with an influence mechanism than with an informational one.

One implication of their result, which is supported by Braud’s 1990 study (see p. 236), is that perhaps there is something unique about biological systems that allows force-like interactions, whereas physical systems such as RNGs do not.
Vasy—1990

Vasy (1990) used a timing argument similar to Walker’s (1987) to refute the IDS model. Vasy generated pseudo-RNG single bits at a rate of one each 8.7 ms. He argued that if IDS were operating, a subject would be more likely to identify bursts of 1s rather than single 1s, given the time between consecutive bits. While he found significant evidence for the primary task of “selecting” individual bits, he found no evidence that these bits were embedded in excess clusters of 1s.

We compute that the maximum probability of a hit within an 8.7-ms window centered on the mean of the normal reaction curve with a standard deviation of 30 ms (Woodworth & Schlosberg, 1960) is 11.5%. Vasy quotes an overall z score for 100 runs of 2.39. From this, we compute a mean z of 0.239 for each run of 36 bits. To obtain this result requires an excess hitting of 0.717 bits, which corresponds to an excess hitting rate of 2%. Given that 11.5% is the maximum that one can expect with normal human reaction times, Vasy’s results easily allow for individual bit selection and thus cannot be used to reject the DAT model on the basis of timing.

Braud —1990

In a cooperative effort with SRI International, Braud (1990) conducted a biological AP study with human red blood cells as the target system. The study was designed, in part, as a prospective test of DAT, and thus all conditions for a valid test were satisfied. Braud found that a significant number of individuals were independently able to “slow” the rate of hemolysis (i.e., the destruction of red blood cells in saline solution) in what he called the “protect” mode. Using data from the nine participants who produced significant results, Braud found support in favor of micro-AP over DAT. Figure 6 shows the results of our reanalysis of all of Braud’s raw data using our more modern formalism of DAT.

The solid line indicates the theoretical mean chance expectation. The squares are the mean values of z^2 for the control data, and the error bars indicate the 1 standard error for the 32 trials in the study. We notice that the control data with eight test tubes is significantly below chance ($t = -2.79$, $df = 62$, $p = .996$). Compared to the chance line, the effort data are significant ($t = 4.04$, $df = 31$, $p = 7.6 \times 10^{-5}$) for eight test tubes and nearly so for $n = 2$ ($t = 2.06$, $df = 31$, $p = .051$). The \times at $n = 8$ indicates the calculated value of the mean of z^2 assuming that the effect size at $n = 2$ was entirely because of AP; similarly, the \times at $n = 2$ indicates the calculated value assuming that the effect size, which was observed at $n = 8$, was totally due to AP. These AP predictions are not significantly different
from the observed data \(t = 0.156, p = .431, df = 62 \) and \(t = 0.906, p = .184, df = 62, \) at \(n = 2 \) and \(8, \) respectively). Whereas DAT predicts no differences between the data at the end points for \(n, \) we find a significant difference \(t = 2.033, p = .023, df = 62, \) That is, to a statistical degree the data at \(n = 8 \) cannot be explained by selection alone. Thus, we concur with Braud’s original conclusion: These results indicate a possible force-like relationship between mental intent and biological consequences.

Figure 6. DAT analysis of hemolysis data.

It is difficult to conclude from our analysis of a single study with only 32 trials that AP is part of nature; nonetheless, this result is very important. Taken with the results of Braud and Schlitz (1989), the evidence of possible AP on biological systems is growing. May and Vilenskaya (1992) and Vilenskaya and May (1994) report that the preponderance of the research on anomalies in the former Soviet Union is the study of AP on biological systems. Their operators, as do ours, report their internal experiences to be suggestive of a force-like connection between them and their biological targets.

Dobyns—1993

Dobyns (1993) presents a method for comparing what he calls the “influence” and “selection” models, corresponding to what we have
been calling DAT and micro-AP. He uses data from 490 “tripolar sets” of experimental runs at PEAR. For each set, there was a high-aim, a baseline, and a low-aim condition.

The three values produced were then sorted into which one was actually highest, in the middle, and lowest for each set. The data were then summarized into a 3×3 matrix, where the rows represented the three intentions and the columns represented the actual ordering. If every attempt had been successful, the diagonal of the matrix would consist of the number of tripolar sets, namely 490. We present the data portion of Dobyns’s table (1993, p. 264) as our Table 2.

Table 2

<table>
<thead>
<tr>
<th>Actual</th>
<th>Intention</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Middle</td>
</tr>
<tr>
<td>High</td>
<td>180</td>
<td>167</td>
</tr>
<tr>
<td>Baseline</td>
<td>159</td>
<td>156</td>
</tr>
<tr>
<td>Low</td>
<td>151</td>
<td>167</td>
</tr>
<tr>
<td>Total</td>
<td>490</td>
<td>490</td>
</tr>
</tbody>
</table>

Dobyns computes an aggregate likelihood ratio of his predictions for the DAT and micro-AP models and concludes in favor of the influence model with a ratio of 28.9 to 1.

However, there are serious problems with the methods used in Dobyns’s paper. In this paper we outline only two of the difficulties. To fully explain them would require a level of technical discussion not suitable for a short summary such as this.

One problem is in the calculation of the likelihood ratio function using his Equation 6, which we reproduce from page 265 of the reference:

$$B(p/q) = \frac{p_1^{n_1} p_2^{n_2} p_3^{n_3}}{q_1^{n_1} q_2^{n_2} q_3^{n_3}} = \left(\frac{p_1}{q_1} \right)^{n_1} \left(\frac{p_2}{q_2} \right)^{n_2} \left(\frac{p_3}{q_3} \right)^{n_3},$$

where p and q are the predicted rank frequencies for each aim under the influence and selection models, respectively, and the ns are the observed frequencies for each aim. We agree that this relationship correctly gives the likelihood ratio for comparing the two models for one row of Table 2. However, immediately following that equation, Dobyns writes: “The aggregate likelihood of the hypothesis over all three intentions may be calculated by repeating the individual likelihood calculation for each
intention, and the total likelihood ratio will simply be the product of factors such as (6) above for each of the three intentions” (Dobyns, 1993, p. 265).

That statement is incorrect. A combined likelihood is found by multiplying the individual likelihoods only if the random variables are independent of each other (DeGroot, 1985, p. 145). Clearly, the rows of the table are not independent. In fact, if you know any two of the rows, the third is determined exactly. The correct likelihood ratio needs to build that dependence into the formula.\(^4\)

A second technical problem with the conclusion that the data support the influence model is that the method itself strongly supports the influence model. As noted by Dobyns (1993, p. 268): “In fact, applying the test to data sets that, by construction, contain no effect, yields strong odds (ranging, in a modest Monte Carlo database, from 8.5 to over 100) in favor of the influence model.” The actual data in his paper yielded odds of 28.9 to 1 in favor of the influence model; however, this value is well within the reported limits from his “influence-less” Monte Carlo data.

Under DAT it is possible that AC-mediated selection might occur at the protocol level, but the primary way is through timing—initiating a run to capitalize upon a locally deviant sub-sequence. How this might work in dynamic RNG devices is clear: Wait until such a deviant sequence is in your immediate future and initiate the run in time to capture it. With “static” devices, such as PEAR’s random mechanical cascade device, how timing enters in is less obvious. Under closer inspection, however, even with this device there is a statistical variation among unattended control runs. That is, there is never a series of control runs that give exactly the same mean. Physical effects, such as Brownian motion, temperature gradients, and so forth, can account for the observed variance in the absence of human operators. Thus, when a run is initiated to capture favorable local “environmental” factors, even for “static” devices, remains the operative issue with regard to DAT. Dobyns does not consider this case at all in his analysis. If DAT enters in at the protocol selection, as it probably does, it is likely to be a second-order contribution because of the limited possibilities from which to select (i.e., six in the tripolar case).

Finally, a major problem with Dobyns’s conclusion, which May pointed out when Dobyns first presented this paper;\(^5\) is that the

\(^4\)Dobyns agrees on this point (private communication).

\(^5\)This paper was first presented at the 1990 meeting of the Society for Scientific Exploration, and, as chair for the session in which it was presented, May pointed out the problem from the convention floor in the discussion following the paper.
likelihood ratio supports the influence model even for their pseudo-RNG data. Dobyns (1993, p. 268) dismisses this finding all too easily, given the preponderance of evidence suggesting that no influence occurs during pseudo-RNG studies (Radin & May, 1986).

Aside from the technical flaws in Dobyns's likelihood ratio arguments, and even ignoring the problem with the pseudo-RNG analysis, we reject his conclusions simply because they hold in favor of influence even in Monte Carlo-constructed unperturbed data.

CIRCUMSTANTIAL EVIDENCE AGAINST AN AP MODEL FOR RNG DATA

Experiments with hardware RNG devices are not new. In fact, the title of Schmidt's very first paper on the topic (1969) portended our conclusion: "Precognition of a Quantum Process." Schmidt lists PK as a third option after two possible sources for precognition, and he remarks: "The experiments done so far do not permit a distinction (if such a distinction is at all meaningful) between the three possibilities" (Schmidt, 1969, p. 108). From 1969 onward, the RNG research has been strongly oriented toward a PK model. The term micro-PK itself embeds the force concept further into the lexicon of RNG descriptions.

In this section, we examine a number of RNG experimental results that provide circumstantial evidence against the AP hypothesis. Any single piece of evidence could be easily dismissed; however, taken together, they demonstrate a substantial case against AP.

Internal Complexity of RNG Devices and Source Independence

Schmidt (1974) conducted the first experiment to explore potential dependencies upon the internal workings of his generators. Since by definition AP implies a force or influence, it seemed reasonable to expect that an influence should depend upon the details of the target system. In this study, one generator produced individual binary bits, which were derived from the β-decay of 90Sr, while the other "binary" output was a majority vote from 100 bits, each of which was derived from a fast electronic diode. Schmidt reports individually significant effects with both generators, yet does not observe a significant difference between the generators.

This particular study is interesting, quite aside from the timing and majority-vote issues; the binary streams were derived from fundamentally different physical sources. Radioactive β-decay is governed by the weak nuclear force, and electronic devices (e.g., noise diodes) are governed by the electromagnetic force. Schematically speaking, the
Applications of Decision Augmentation Theory

Electromagnetic force is approximately 1,000 times as strong as the weak nuclear force, and modern high-energy physics has shown them to be fundamentally different after about 10^{-10} seconds after the big bang (Raby, 1985). Thus, a putative AP-force would have to interact equally with these two forces; and since there is no mechanism known that will cause the electromagnetic and weak forces to interact with each other, it is unlikely that AP will turn out to be the first coupling mechanism. The lack of difference between β-decay and noise diode generators was confirmed years later by May, Humphrey, and Hubbard (1980).

We have already commented upon one aspect of the timing issue with regard to Radin and May’s (1986) experiment and the papers by Walker (1987) and Vassy (1990). May (1976) introduced a scheme to remove any first-order biases in binary generators that also is relevant to the timing issue. The output of his generator was a match or antimatch between the random bit stream and a target bit. One mode of the operation of the device, which May describes, included an oscillating target bit—one oscillation per bit at approximately 1 MHz rate. May and Honorton (1976) and Honorton and May (1976) reported significant effects with the RNG operating in this mode. Thus, significant effects can be seen even with devices that operate in the microsecond time domain, which is three orders of magnitude faster than any known physiological process.

Effects with Pseudo-RNGs

Pseudo-RNGs are, by definition, those that depend upon an algorithm, which is usually implemented on a computer. Radin (1985) analyzed all the pseudo-RNGs commonly in use and found that they require a starting value (i.e., a seed), which is often derived from the computer’s system clock. As we noted previously, Radin and May (1986) showed that the bit stream, which proved to be “successful” in a pseudo-RNG study, was bit-for-bit identical with the stream, which was generated later but with the same seed. With that generator, at least, there was no change from the expected bit stream. Perhaps it is possible that the seed generator (i.e., system clock) was subjected to some AP interaction. We propose two arguments against this hypothesis:

1. Even one cycle interruption of a computer’s system clock will usually invoke a system crash, an event not often reported in pseudo-RNG experiments.
2. Computers use crystal oscillators as the basis for their internal clocks. Crystal manufacturers usually quote errors in the stated

6 Later, this technique was adopted by Jahn (1982) for use with RNG devices at PEAR.
oscillation frequency of the order of 0.001%. That translates to 500 cycles for a 50 mHz crystal, or to 10 \(\mu \)s in time. Assuming that the quoted error is a 1 - \(\sigma \) estimate, and that a putative AP interaction acts at within the \(\pm 2 - \sigma \) domain, then shifting the clock by this amount might account for only one seed shift in Radin and May’s experiment. By Monte Carlo methods, we determined that, given a random entry into seed-space, the average number of ticks to reach a “significant” seed is 10; therefore, even if AP could shift the oscillators by 2\(\sigma \), it cannot account for the observed data.

Since computers in pseudo-RNG experiments are not reported as “crashing” often, it is safe to assume that pseudo-RNG results are due only to AC. In addition, since the results of pseudo-RNG studies are statistically inseparable from those reported with true RNGs, it is also reasonable to assume that the mechanisms are similarly AC-based.

Precognitive AC

Using the tools of modern meta-analysis, Honorton reviewed the precognition card-guessing database (Honorton & Ferarri, 1989). This analysis included 309 separate studies reported by 62 investigators. Nearly two million individual trials were contributed by more than 50,000 subjects. The combined effect size was \(\bar{\varepsilon} = 0.020 \pm 0.002 \), which corresponds to an overall combined effect of 11.4\(\sigma \). Two important results emerge from Honorton’s analysis. First, it is often stated by critics that the best results are from studies with the fewest methodological controls. To check this hypothesis, Honorton devised an eight-point quality measure (e.g., automated recording of data, proper randomization techniques) and scored each study with regard to these measures. There was no significant correlation between study quality and study score. Second, if researchers improved their experiments over time, one would expect a significant correlation of study quality with date of publication. Honorton found \(r = 0.246, df = 307, p = 2 \times 10^{-7} \). In brief, Honorton concluded that a statistical anomaly exists in these data that cannot be explained by poor study quality or by a large variety of other hypotheses including the file-drawer effect. Therefore, a potential mechanism underlying DAT has been verified.

SRI International’s RNG Experiment

May et al. (1980) conducted an extensive RNG study at SRI International in 1979. They applied state-of-the-art engineering and methodology to construct two true RNGs, one based on the \(\beta \)-decay of \(^{137}\)Pm and the other based on an MD-20 noise diode from Texas Instruments. It is
beyond the scope of this paper to describe in detail the intricacies of this experiment; however, we will discuss those aspects that are pertinent to this discussion.

Technical details. Each of the two sources was battery operated and optically coupled to a Digital Equipment Corporation LSI 11/23 computer. Fail-safe circuitry would disable the sources if critical physical parameters (e.g., battery voltages and currents, temperature) exceeded preset ranges. Both sources were subjected to environmental testing that included extreme temperature cycles, vibration tests, E & M, and nuclear gamma and neutron radiation tests. Both sources behaved as expected, and the critical parameters, such as temperature, were monitored and their data stored along with the experimental data.

A source was sampled at 1 kHz rate. After 8 ms, the resulting byte was sent to the computer while the next byte was being obtained. In this way, a continuous stream of 1-ms data was presented to the computer. May et al. (1980) had specified in advance that bit number 4 was the designated target bit. Thus, each byte provided 3 ms of bits prior to the target and 4 ms of bits after the target bit.

A trial was defined as a definitive outcome from a sequential analysis of bit 4 from each byte. In exchange for not specifying the number of samples in advance, sequential analysis requires that the Type I and Type II errors and the chance and extrachance hitting rate be specified in advance. In May et al.'s (1980) two-tailed analysis, \(\alpha = \beta = 0.05 \), and the chance and extrachance hitting rate was 0.50 and 0.52, respectively. The expected number of samples to reach a definitive decision was approximately 3,000. The outcome from a single trial could be in favor of a hitting rate of 0.52, 0.48, or at chance of 0.50, with the usual risk of error in accordance with the specified Type I and Type II errors.

Each of seven operators participated in 100 trials of this type. For an operator's data to reach independently statistical significance, the operator had to produce 16 successes in 100 trials, where a success was defined as extrachance hitting (i.e., the exact binomial probability of 16 successes for 100 trials with an event probability of 0.10 is .04, where one less success is not significant). Two operators produced 16 and 17 successful trials, respectively.

Temporal analysis. We analyzed the 33 trials from the two independently significant operators from May et al.'s (1980) experiment. Each of the 33 trials consisted of approximately 3,000 bits of data with 3 bits and +4 bits of 1 ms/bit temporal history surrounding the target bit. We argued that if the significance observed in the target bits was because of AP, we would expect a large correlation with the target bit's immediate neighbors, which are only \(\pm 1 \) ms away. As far as we know, there is no
known physiological process that can be cognitively, or in any other way, manipulated within a millisecond. We might even expect a 100% correlation under the complete AP model.

We computed the linear correlation coefficients between bits 3 and 4, 4 and 5, and 3 and 5. For binary data:

\[N \Phi^2 \sim \chi^2 (df = 1), \]

where \(\Phi \) is the linear correlation coefficient and \(N \) is the number of samples. Since we examined three different correlations for 33 trials, we computed 99 different values of \(N \Phi^2 \). Four of them produced \(\chi^2 \)'s that were significant—well within chance expectation. The complete distribution is shown in Figure 7. We see that there is excellent agreement of the 99 correlations with the \(\chi^2 \) distribution for one degree of freedom, which is shown as a smooth curve.

![Figure 7. Observed and theoretical correlation distributions.](image)

We conclude, therefore, that there was no evidence beyond chance to suggest that the target bit neighbors were affected even when the target bit analysis produced significant evidence for an anomaly. So, knowing the physiological limitations of the human systems, we further concluded that the observed effects could not have arisen as the result of a human-mediated force (i.e., AP).
Mathematical Model of the Noise Diode

Because of the unique construction parameters of Texas Instrument’s MD-20 noise diode, May et al. (1980) were able to construct a quantum mechanical model of the detailed workings of the device. This model contained all known properties of the material and its construction parameters. For example, the band gap energy in Si, the effective mass of an electron or hole in the semiconductor, and the impurity concentration were among the parameters for the model. The model was successful at calculating the diode’s known and measured behavior as a function of temperature. May et al. (1980) were able to simulate their RNG experiment down to the quantum mechanical details of the noise source. They hoped that, by adjusting the model’s parameters so that the computed output agreed with the experimental one, they could gain insight as to where the influence “entered” the device.

May et al. (1980) were not able to find a set of model parameters that mimicked their RNG data. For example, changing the band gap energy for short periods of time, increasing or reducing the electron’s effect mass, or redistributing or changing the impurity content produced no unexpected changes in the device output. The only device behavior that could be affected was its known function of temperature.

Because of the construction details of the physical RNG, this result could have been anticipated. The changes that could be simulated in the model were all in the microsecond domain because of the details of the device. Both with the RNG and in its model, the diode’s multi-MHz output was filtered by a 100-kHz wide bandwidth filter. Thus, any microsecond changes would not pass through the filter. In short, because of this filtering, the RNG was particularly insensitive to potential changes of the physical parameters of the diode.

Yet, solid statistical evidence for an anomaly was seen by May et al. (1980). Since the diode device was shown mathematically and empirically to be insensitive to environmental and physical changes, these results must have occurred as a result of AC rather than AP. In fact, this observation, coupled with the bit-timing argument, which we have already described, led May et al. to question force-like models in RNG studies in general.

Summary of Circumstantial Evidence Against AP

We have identified six circumstantial arguments that, when taken together, provide increasingly difficult requirements that must be met by a putative AP force. In summary, the RNG database demonstrates that:
1. Data are independent of internal complexity of the hardware RNG device.
2. Data are independent of the physical mechanism producing the randomness (i.e., weak nuclear or electromagnetic).
3. Effects with pseudorandom generators are statistically equivalent to those observed with true hardware generators.
4. Reasonable AP models of mechanism do not fit the data.
5. In one study, bits which are ±1 ms from a "perturbed" target bit are themselves unperturbed.
6. A detailed model of a diode noise source, which includes all known physics of the device, could not simulate the observed data streams.

In addition, AC, which is a mechanism to describe the data, has been confirmed in non-RNG experiments. We conclude, therefore, that an AP force that is consistent with the database must

1. Be equally coupled to the electromagnetic and weak nuclear forces.
2. Be mentally mediated in times shorter than one millisecond.
3. Follow a $1/\sqrt{n}$ law.

For these to be true, an AP force would be at odds with an extensive amount of verified physics and common behavioral observables. We are not saying, therefore, that it cannot exist; rather, we are suggesting that instead of having to force ourselves to invent a whole new science, we should look for ways in which AP might fit into the present world view. In addition, we should invent information-based and testable alternate mechanisms for the experimental observables.

DISCUSSION AND CONCLUSIONS

Our recent results in the study of AC (May, Spottiswoode, & James, 1994) suggest that the quality of AC is proportional to the change in Shannon entropy. Following Vassy (1990), we compute the change in Shannon entropy for an extrachance, binary sequence of length n. The total change of entropy is given by:

$$\Delta S = S_0 - S,$$

where for an unbiased binary sequence of length n, $S_0 = n$, and S is given by:

$$S = -np_1 \log_2 p_1 - n(1 - p_1) \log_2 (1 - p_1).$$
Let $p_1 = 0.5 (1 + \varepsilon)$ and assume that ε, the effect size, is small compared to 1 (i.e., typical RNG effect sizes are of the order of 3×10^{-4}). Using the approximation

\[\ln (1 + \varepsilon) = \varepsilon - \frac{\varepsilon^2}{2}, \]

we find that S is given by

\[S = n - n \frac{\varepsilon^2}{2 \ln 2}, \]

or that the total change of entropy for a biased binary sequence is given by

\[\Delta S = S_0 - S = n \frac{\varepsilon^2}{2 \ln 2}. \]

Since our analysis of the historical RNG database shows that the effect size is proportional to $1/\sqrt{n}$, the total change of Shannon entropy becomes a constant that is independent of the sequence length:

\[\Delta S = \text{constant}. \]

We have seen in our other AC experiments (May et al., 1994) that the quality of the data is proportional to the change of the target entropy. In RNG experiments the quality of the data is equivalent to the excess hitting, which according to DAT is mediated by AC and should be independent of the sequence length. We have shown that the quality of RNG data depends upon the change of target entropy and is independent of the sequence length. Therefore, we suggest that the change of target entropy may account for successful AC and RNG experiments.

Braud's study of AP on red blood cells and Braud and Schlitz's study on electrodermal effects imply that there is something unique about living systems. Before we would be willing to declare that AP is a valid mechanism for biological experiments, more than two, albeit well-designed and well-executed, studies are needed.

When DAT is applied to the RNG database, a simple force-like perturbational model fails, by many orders of magnitude, as a viable candidate for the mechanism. In addition, when viewed along with the collective circumstantial arguments against a force-like explanation, it is clear that another model is required. Any new model must explain why
quadrupling the number of bits in the sequence length fails to produce a z-score twice as large.

Given that one possible information mechanism (i.e., precognitive AC) can, and has been, independently confirmed in the laboratory, and given the weight of the empirical, yet circumstantial, arguments taken together against AP, we conclude that the anomalous results from the RNG studies arise, not because of a mentally mediated force, but rather because of a human ability to be a mental opportunist by making AC-mediated decisions to capitalize on the locally deviant circumstances.

Generally, we suggest that future studies be designed in such a way that the criteria, as outlined in this paper and in May et al. (1995), conform to a valid DAT analysis. Our discipline has evolved to the point where we can no longer be satisfied with yet one more piece of evidence of a statistical anomaly. We must identify the sources of variance as suggested by May et al. (1994), limit them as much as possible, and apply models, such as DAT, which can begin to shed light on the physical, physiological, and psychological mechanisms of anomalous mental phenomena.

REFERENCES

Applications of Decision Augmentation Theory

E. C. May, S. J. P. Spottiswoode, and C. L. James
Cognitive Sciences Laboratory
330 Cowper Street, Suite 200
Palo Alto, CA 94301

J. M. Utts
Division of Statistics
University of California, Davis
Davis, CA 95616-8705